- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Luhar, Mitul (1)
-
Vijay, Shilpa (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AbstractPrevious theoretical and simulation results indicate that anisotropic porous materials have the potential to reduce turbulent skin friction in wall-bounded flows. This study experimentally investigates the influence of anisotropy on the drag response of porous substrates. A family of anisotropic periodic lattices was manufactured using 3D printing. Rod spacing in different directions was varied systematically to achieve different ratios of streamwise, wall-normal, and spanwise bulk permeabilities ($$\kappa _{xx}$$ ,$$\kappa _{yy}$$ , and$$\kappa _{zz}$$ ). The 3D printed materials were flush-mounted in a benchtop water channel. Pressure drop measurements were taken in the fully developed region of the flow to systematically characterize drag for materials with anisotropy ratios$$\frac{\kappa _{xx}}{\kappa _{yy}} \in [0.035,28.6]$$ . Results show that all materials lead to an increase in drag compared to the reference smooth wall case over the range of bulk Reynolds numbers tested ($$\hbox {Re}_b \in [500,4000]$$ ). However, the relative increase in drag is lower for streamwise-preferential materials. We estimate that the wall-normal permeability for all tested cases exceeded the threshold identified in previous literature ($$\sqrt{\kappa _{yy}}^+> 0.4$$ ) for the emergence of energetic spanwise rollers similar to Kelvin–Helmholtz vortices, which can increase drag. The results also indicate that porous walls exhibit a departure from laminar behavior at different values for bulk Reynolds numbers depending on the geometry. Graphical abstractmore » « less
An official website of the United States government
